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ABSTRACT 

Big bang nucleosynthesis constraints on baryon isocurvature perturbations are de- 
termined. A simple model ignoring the effects of the scale of the perturbations is first 
reviewed. This model is then extended to test the claim that large amplitude per- 
turbations will collapse. forming compact objects and preventing their baryons from 
contributing to the observed baryon density. It is found that baryon isocurvature per- 
turbations are constrained to provide only a slight increase in the density of baryons 
in the universe over the standard homogeneous model. In particular it is found that 
models which rely on power laws and the random phase approximation for the power 
spectrum are incompatible with big bang nucleosynthesis unless an ad hoc. small scale 
cutoff is included. 
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1 Introduction 

Big bang nucleosynthesis (BBS) has produced well studied predictions of the light element abun- 
dances (Yang et al. 1984; Walker et al. 1991, hereafter WSSOK: Smith, Kawano, & Malaney 159:3: 
Iiernan Sr Rrauss 1994: Copi, Schramm. S- Turner 1994). These predictions restrict the total bary- 
onic contribution to the critical density of the universe. fi,, to be Q, 5 0.1. There have been many 
attempts to get around this bound and to extend it to the theoretically preferred value Re = 1. .I\ 
notable class of such attempts is inhomogeneous BBX (for a review see Malaney & Mathews 199:3). 
These studies of small scale inhomogeneities in the neutron to proton ratio including hydrodynamic 
effects, diffusion. extended networks, and multizone calculations turn out, however, to provide no 
appreciable increase on the bound to Qg set by standard BBS (Ku&i-Suonio et al., 1990; Mathews 
et al.. 1990; Terasawa St Sato. 1991; Thomas et al. 1994: Jedamzik, Fuller, & ?vfathews? 1994). 

On another front. structure formation theories are being constrained by a rapidly growing body 
of observational data. From this the primeval isocurvature baryon (PIB) model has fared relatively 
well. The PIB model relies solely on baryons to make up the matter in the universe and isocurvature 
perturbations to generate the structure (Peebles 198ia.b; Cen. Ostriker, & Peebles 1993). One short 
coming of this theory is that it requires %J = QB = 0.1-0.2. above the upper bound on flB from 
BBN. Independently, it has been suggested that non-linear isocurvature fluctuations may allow a 
larger contribution by baryons than allowed for in the standard. homogeneous case (Hogan 1978; 
Hogan 1993). 

In this work we have looked at the effect of large scale isocurvature perturbations on nucleosyn- 
thesis. Our treatment follows that of Epstein & Petrosian (195, hereafter EP) and Yang et al. 
(1984). In those efforts, it was assumed that the volume distribution for the nucleon abundance 
could be described by a gamma distribution in the baryon to photon ratio, 9. The abundances of 
the light elements can then be used to constrain the parameters of the nucleon abundance distribu- 
tion. Here we will update that analysis utilizing the most recent constraints available from the light 
elements including 7Li. We will also consider additional forms for the nucleon abundance distribu- 
tion to include the log normal (Barrows & Morgan 1983) and the gaussian (Sale & Mathews 1936) 
distributions. Furthermore we have estended the analysis to include a distribution of power on 
different scales to allow for dense regions to form compact objects and hence not contribute their 
light elements to the observed abundances. 

For our model we assume the perturbations can be described by a power spectrum with random 
phases. 1Ve have no knowledge of the spatial distribution, r)(z). and instead specify the choice of 
the density probability distribution, f(v). Recently Gnedin, Ostriker. & Rees (1994) have also 
considered the effects of baryon perturbations on nucleosynthesis. They chose a log-normal density 
distribution with two scales. 1Ve choose three different density distributions (including the log- 
normal distribution) defined on a single scale. We have not specifically chosen parameters to match 
those of the PIB model. Our results, where comparable, agree with theirs. Gnedin, Ostriker & 
Rees (1991) also approached the problem from the opposite direction: they assumed a form for 
V(Z) and derive a density distribution f(q). They have found some models that can circumvent 
our bounds at the expense of assuming correlated phases. 

An outline of the paper is as follows: in $2 we discuss the observational bounds on the light 
element abundances used in this paper. in particular. how they differ from the values found in 
WSSOK. In $3 we describe our model for the inhomogeneities. In $4 we present the results of our 
calculations. 



2 Observational Limits 

Observational measurements of the light element abundances play the crucial role of constraining 
the standard big ban, 0 nucleosynthesis model as well as models of nucleosynthesis which include 
inhomogeneities. The process of estracting abundances from the measurements. in particular pri- 
mordial abundances, is a difficult task. An analysis of this process in the context of limits on BBS 
is given in WSSOK. The 9.5% confidence limit (2~7) primordial abundances quoted in WSSOK are 

. 
Yp = 0.23 f 0.01, 

D/H 2 1.8 x lo-‘, 

(D + 3He)/H 5 1.0 x 10e4, 

‘Li/H = (1.2 f 0.2) x lo-“. (1) 

Here Yp is the 4He mass fraction. These limits restrict the present value of r) to 2.8 5 qlo 5 4.0 

(QlO E 10’0~). I n what follows we will use the WSSOK values with slight modifications to Yp and 
7Li as discussed below. 

It is noted in WSSOK that the upper limit on Yp, Yp 5 0.24, may be uncertain by 0.005. More 
recently a number of high precision measurements of 4He in extragalactic H II regions have been 
made (Page1 et al. 1992; Skillman et al. 1994a,b; Izotov et al. 1994). Olive and Steigman (199-I) 
have performed a detailed statistical analysis of these new measurements and found the primordial 
helium value 

Up = 0.232 f 0.003 f 0.005, (2) 

where the statistical error is listed first and the systematic error second. The 95% confidence range 
(including systematic errors) is 

0.221 5 Yp < 0.243. (3) 

We will employ this range in our analysis. 
The 9.5% confidence limit quoted by WSSOK for 7Li/H consists solely of the statistical errors in 

the measurements. Recently Thorburn (1994) has made detailed measurements on a large number 
of metal poor dwarf stars. Her analysis employed a different model of stellar atmospheres than the 
one used to derive the data compiled in WSSOK. This model produces higher effective temperatures 
and hence higher lithium abundances. Her data yield a higher mean ‘Li abundance 

‘U/H = (1.8 f 0.1) x 10-r’ (-I) 

where the quoted error is again only the statistical uncertainty in the mean. The difference between 
the ‘Li abundance given in (1) and (4) is a good estimate for the size of the systematic errors 
involved in making a determination of the the primordial 7Li abundance. For this work we will 
consider both this new upper limit and the WSSOK upper limit. 

In summary, we are using the primordial abundances of D and 3He as found in WSSOK ( 1) 
and modifications of the USSOK values of Yp (3) and ‘Li (4) due to recent measurements with 
explicit consideration of systematic errors. The primordial abundance limits used throughout the 
rest of this work are 

0.221 5 Yp 5 0.243, 

D/H 2 1.8 x lo-‘, 

(D + 3He)/H 5 1.0 x 10w4, 

rLi/H 5 1.4 x 10-l’ (WSSOK), 

rLi/H 5 2.0 x lo-lo (Thorburn 1994). (-3) - 
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The lithium bound is particularly important for constraining density fluctuations. In standard 
homogeneous BBN lithium must be nears its minimum value of ‘Li/H - 10-l’ in order to be 
concordant with D and D + 3He. Obviously any density variation selects ‘Li values above the 
minimum, hence ‘Li tightly constrains the range of perturbations. 

3 Mode1 of Density Fluctuations 

We begin with a simple model of inhomogeneities (EP). We assume that some unknown process 
generates a baryon to photon ratio ~(2) at each point in space in such a way that the fraction of 
regions with a given value 7 is governed by the distribution f(q). We acknowledge our ignorance of 
the process that generates q(s) by assuming (instead of deriving) the form of f(q). Given f(q) each 
region has a constant baryon to photon ratio 77 throughout nucleosynthesis. The regions undergo 
standard BBN, then mis producing the observed abundances of light elements. The distribution 
of these regions is described in our model by the function f(q). Given the distribution f( 7) the 
average mass fraction of a light element is 

-hi = /om dll ?lf(t71Xd rl)/ ii-’ (6) 

where Xi(q) is the mass fraction of element i according to standard Big Bang nucleosynthesis in a 
region with a baryon to photon ratio of 7. The average value of q for the universe is given by 

for f(r,~) normalized, 

ii= o J IX)k?f(r)L (7) 

J = klf(B) --= 1. (8) 
0 

Shortcomings of this simple model include the assumption of equal power in perturbations on 
all scales and the allowance of extremely dense regions to contribute to the observed light element 
abundances today. It has been pointed out (Rees 1981) that high amplitude perturbations with 
a mass larger than the Jean’s mass at the time of recombination will form gravitationally bound 
objects, These objects prevent the baryons in them from mixing with other baryons in the universe. 
Hence these overdense regions would not contribute to the observed abundances. 

To determine a more realistic model, we consider isocurvature perturbations to the baryon to 
photon ratio. These perturbations are characterized by their power spectrum, (16k12). Given the 
power spectrum the average abundance is found by 

*pi = s &t16k12) &Yk) d1711f(‘I)XdV7) 
/ &(lb12) so qc(k) dq vf( ‘I) 

= J*.’ yA2(k) Jplk) dq qf( q)Xi( q) 
J $v(k) J:c(k) drlrlf( ‘I) * 

(9, 

Here 

qc(k) is the cutoff in 7 based on the Jeans mass at recombination. and k,, is imposed to insure 
that the integrals converge. Since the Jeans mass at recombination. MJ x q-1/2 (Hogan 1978: 
Hogan 1993) and the mass inside a scale k. -tfk x v/k3. the cutoff in 7 is 

qc(k) a k2 G ,Bk’, (11) - 
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where 3 x 6 x LO-“’ for k in !~lpc- ‘. Using this relation and interchanging the order of integration 
in S, ‘9) gives 

s, = So”” dq qf( Il)Xi( q) .($:1/z qA2(k) 
1 

Jb?“‘” drl dh) J$+,z +$2(k) ’ 

where bax z qc(k,,). In Eq. (12) our two assumptions are manifest. We have imposed an upper 
limit, on k,, implying that there is no power in the perturbation spectrum on scales smaller than 
x &= 2r/kmax and we have assumed that on sufficiently large scales, corresponding to hik > A~J 
or k < m gravitational collapse will prevent these regions from mixing the hence these regions 
to not contribute in an average element abundance. One should note however that the average 
value of 77, ?j is not constrained by qmax- The density distribution indeed includes regions with 7 > 
vmau. though they do not contribute to the quantities .ri. We will rewrite k,,, in terms of tiax 
in the rest of this work. 

4 Results 

For S;(q) we have used the standard Kaiano code (Kawano 1992) with tL’, = 3, T, = 889 set and 
the correction 4Yp = +0.0006 (Ii ernan 1993). We begin by reviewing previous work on the gamma 
and log normal distributions and provide an extended analysis of the gaussian distribution. Then 
we consider a model based on inclusion of the scale of the perturbations where the power spectrum 
is given by a power law. 

4.1 Gamma Distribution 

The gamma distribution (EP. Yang et al. 1984) is given by 

For this distribution the variance 62, is 

b2= : 
( ) 

* = h2> - is2 = .-I 
-2 v 

(13) 

(14) 

The results of varying J2 and ij are shown in figure 1. We have required the averaged abundances 
to fit the observations (5). Figure 1 shows the abundance contours of the light elements as given 
by the limits in (5) and thus delineates the resulting parameter space that reproduces the correct 
abundances. In Yang et al. ( 1984) the parameters d2 and 75 were constrained to q z 3 and ~5~ s 3 
without using the 7Li bound and a weaker upper limit on 4He of Yp < 0.25. (For 62 < 1, the upper 
bound on ij is relaxed to the homogeneous upper bound.) Here, as one can see from the figure. the 
more restrictive 4He bound combined with the bound from D + 3He yet with the weaker bound 
from ‘Li (4) allows us to constrain 2.8 s ill0 2 3.6. Including the LVSSOK ‘Li bound this range is 
further constrained to 2.8 2 ?lo s 3.3. These results are summarized in table 1. 

4.2 Log-Normal Distribution 

The log-normal distribution (Barrow &z Morgan 1983) is given by 
. 

f(q) = iexp (-‘“:p’)*) 
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For this distribution 
fj=e LA+& /2 (16) 

The results of our search of parameter space are shown in figure 2. Using the weaker 7Li bound (4) 
then ijru s 3.6 is allowed. This result is similar to that given by Barrow and Morgan (1983): though 
we are using more restrictive bounds on D + 3He and “He. If we include the WSSOK ‘Li bound 
we are restricted to &e 5 3.2. These results are also included in table 1. 

4.3 Gaussian Distribution 

The gaussian distribution we consider is given by 

j(q) = exp (-‘“Gf”). (1:) 

A previous study (Sale and Mathews 1986) considered a one parameter gaussian distribution with 
p = 0. Using this two parameter distribution we find 

2 
J- 

e-p2/2u= 

q=p+ 
G u 1 + erf(p/&r.)’ 

(18) 

Note that, this expression requires 
2 

q> ;“. 
$ (19) 

Thus a region of parameter space is already restricted by the mathematics. The results of the 
parameter space search are shown in figure 3. Using the weaker ‘Li bound (4) then qru 5 3.7. If 
we include the WSSOK ‘Li bound then iire 5 3.4. These results are summarized in table 1. 

4.4 Power Law 

We assume a featureless power law for the power spectrum (Peebles 198ia,b) 

(l&l*) = k”. 

Thus A*(k) IX k”+3 and the average abundance (12) is 

(20) 

Xi = J r)max 
dqt7f(ll)-yifrl) 1 

0 
[ - ($-)~]/~qmk(9) [1- (J-y] . (21) 

In the limit of bar -c cc (k,,, - oo) this reduces to the simpler case where the scale of the 
perturbations was ignored (6). Hence for qmkX >> ?j we expect the results to be independent of the 
power law index, n. For each of the previously studied distribution functions we have performed 
the average as given above (21). The results are shown in figs. 4-6. The spectral index, n = -0.5 
was chosen for illustrative purposes and since it is the preferred value in the PIB model. 

As an example of the results with a power law distribution consider the gamma distribution 
(fig. 4). For ~5~ = 0.1 (a) using the weaker ‘Li (4) there is a small band in the allowed parameter 
space between the “He and D + 3He bounds. The WSSOK ‘Li value is only marginally consistent 
with the D + 3He bound leaving a verp.narrow allowed region in parameter space. For 6* = 0.2 
(b) the limit from the weaker ‘Li value roughly overlays the 4He limit and the WSSOK ‘Li value 
is inconsistent with the D + 3He limit. For 6* = 0.5 (c) ‘Li is always produced in greater amounts 

6 



than allowed according to the \VSSOK limit. Finally for 5” = 1.0 (d) rLi is always overproduced 
and the D + 3He is inconsistent with the ‘He limit (there is no allowed parameter space!. 

From our expression for rlf( k) ( 11). if qrnax = 5 x 10-l’ then Xki, z 70 kpc. Thus for this 
qmax the spectrum of perturbations must be cutoff at the (comoving) scale of TO kpc. So structure 
on scales smaller than this could be created from baryon isocurvature baryon perturbations. To 
allow smaller scale structure to form we must lower Xe and hence raise hax. Thus we use as 
our criteria for determining valid regions in parameter space that all the light element bounds are 
satisfied and qmax 2 5 x 10 -lo From fig. -!(a) we see that requiring structure on scales less than . 
70 kpc eliminates the horizontal region where the light element abundances are consistent with 
observations. From figs. 4(a-d), we see that this leads to a limit of 310 5 6.0 with the weaker 7Li 
abundance and ii10 5 -1.0 for the LVSSOK ‘Li bound. Similar results hold for the log normal [fig. 5) 
and gaussian (fig. 6) distributions. These results are also summarized in table 1. Notice, if we 
allow an arbitrary cutoff at 3.5 x 10-l’ s v max 5 5 x lo-” we can get 0 to be as large as desired. 
However, this requires introducing new physics to explain the origin of the cutoff at 70-80 kpc. 

We noted above that the results should be largely independent of the power law index, n. To 
verify this we have examined the gamma distribution for three values of n. The values chosen are 

- n = -0.5 (fig. 4), n = -2.5 (fig. i). and n = 2.5 (fig. 8). Comparing these figures we find that 
decreasing n slightly shifts the bounds to higher q. This effect is most pronounced for 6* = 1.0 
(part (d) of th e fi gures). However, since this effect is small and shift all bound in appro>timately 
the same manner, the limits quoted in table 1 are valid for all values of n. 

5 Conclusions 

As shown in table 1 the extra parameters used in these models of inhomogeneous BBS allow for 
only a slight increase in 7 over SBBS. This fact is easy to understand. First ignore the ‘Li limits. 
Since the abundance of ‘He is a monotonically increasing function of r,~ and the abundances of 
D and 3He are monotonically decreasing functions of ‘I, when we include regions of high q we 
are overproducing (underproducing) 4He (D and 3He) in the universe. The slight increase in the 
allowed value for T] comes from the fact that 4He is a slowly varying function of 7. When we include 
the ‘Li bound it provides the tight upper bound on 9. This is due to the fact that the observed 
abundance lies in the trough of the predicted BBN production (see WSSOK). Thus any regions of 
high q greatly over produce ‘Li and we cannot allow such regions to have a significant contribution 
in the universe. The slight increase in q allowed is due to the generous limits we have allowed for 
the ‘Li abundance. 

The case of a power law distribution allows only a slightly extended range at the expense of 
adding two new parameters, n and f7max. The reason for this again traces back to the above 
discussion of mixing in regions with too much or too little of the light elements. Furthermore, 
these results are essentially independent of n. This in turn places tight constraints on models that 
contain these perturbations. In models that allow the power spectrum to extend to small scales 
the density of baryons is restricted to the same region as homogeneous BBN. Models that impose 
a small scale cutoff can. if the cutoff falls in just the right region, lead to much higher values for the 
baryon density at the expense of adding new physics. Recently Gnedin, Ostriker, & Rees (1994) 
have found some non-gaussian baryon isocurvature models can circumvent these bounds. We will 
return to this topic in a future work. 
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Figures 

1. Parameter space plot for the gamma distribution. The acceptable parameter space is between 
the 4He lines (solid). below and to the right of the D line (short-dash). above and to the right 
of the D + 3He line ‘dash-dot), and below the WSSOK ‘Li line (long-dash) or below the 
Thorburn ‘Li line (long-dash. short-dash). The light gray shaded region satisfies the “He. D, 
D + 3He, and Thorburn (weaker) rLi bounds. The dark gray shaded region satisfies the ‘He, 
D, D + 3He. and WSSOK ‘Li bounds. 

2. Parameter space plot for the log normal distribution. The acceptable parameter space is as 
defined in figure 1. 

3. Parameter space plot for the gaussian distribution. The acceptable parameter space is as 
defined in figure 1. The region above the slanted solid line is not accessible for mathematical 
reasons (see text for details). 

4. Parameter space plot for the gamma distribution with scale for n = -l/2. The acceptable 
parameter space is ;F defined in figure 1. In a) with 6’ = 0.1, q s 6 x lo-lo for qmax 2 
5 x lo-“. In b) with h’ = 0.2. the WSSOK 7Li limit does not allow any region of concordance. 
In c) with J2 = 0.5, the Thorburn ‘Li limit falls below the D +3He limit. In d) with 15~ = 1.0 
7Li is overproduced for all values of q and qmax and the region defined by the D and D + 3He 
limits does not overlap the region defined by the Yp limits. 

5. Parameter space plot for the log normal distribution with scale for n = -l/2. The acceptable 
parameter space is as defined in figure 1. 

6. Parameter space plot for the gaussian distribution with scale for n = -l/2. The acceptable 
parameter space is as defined in figure 1. 

7. Parameter space plot for the gamma distribution with scale for n = -2.5. The acceptable 
parameter space is as defined in figure 1. 

8. Parameter space plot for the gamma distribution with scale for n = 2.5. The acceptable 
parameter space is as defined in figure 1. 
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Distribution Upper limits on 710 
Function w/o WSSOK ‘Li with WSSOK ‘Li 
Gamma 3.6 3.3 
Log normal 3.6 3.2 
Gaussian 3.7 3.1 
Power law + gamma 6.0 4.0 
Power law + log nor&l 6.0 4.0 
Power law + gaussian 5.0 4.0 

Table 1: Upper limits on ~10 for various distribution functions (see text for details). 
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